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ABSTRACT
Aspect-based sentiment analysis (ABSA) is a fine-grained senti-
ment analysis task designed to identify the polarity of a target
aspect. Some works introduce various attention mechanisms to
fully mine the relevant context words of different aspects, and
use the traditional cross-entropy loss to fine-tune the models for
the ABSA task. However, the attention mechanism paying partial
attention to aspect-unrelated words inevitably introduces irrele-
vant noise. Moreover, the cross-entropy loss lacks discriminative
learning of features, which makes it difficult to exploit the implicit
information of intra-class compactness and inter-class separabil-
ity. To overcome these challenges, we propose an Aspect Feature
Distillation and Enhancement Network (AFDEN) for the ABSA
task. We first propose a dual-feature extraction module to extract
aspect-related and aspect-unrelated features through the attention
mechanisms and graph convolutional networks. Then, to elimi-
nate the interference of aspect-unrelated words, we design a novel
aspect-feature distillation module containing a gradient reverse
layer that learns aspect-unrelated contextual features through ad-
versarial training, and an aspect-specific orthogonal projection
layer to further project aspect-related features into the orthogonal
space of aspect-unrelated features. Finally, we propose an aspect-
feature enhancement module that leverages supervised contrastive
learning to capture the implicit information between the same sen-
timent labels and between different sentiment labels. Experimental
results on three public datasets demonstrate that our AFDENmodel
achieves state-of-the-art performance and verify the effectiveness
and robustness of our model.
∗Lei Jiang is the corresponding author.
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1 INTRODUCTION
Aspect-based sentiment analysis (ABSA) is a fine-grained sentiment
classification task, which aims to infer the sentiment polarity (i.e.,
positive, neutral or negative) of a given aspect in the whole sentence.
It has attracted extensive attention in recent years. Different from
traditional text classification or sentence-level sentiment analysis,
there may be several aspects in a sentence, and different aspects
may have different contexts and sentiment polarities. For example,
in a sentence “The ambience was nice, but service wasn’t so great.”,
the sentiment for “ambience” is positive, while the sentiment for
“service” is negative. Therefore, it is necessary to mine the context
words related to the target aspect to predict its sentiment polarity.
However, how to capture the relevant context words of different
aspects and make full use of their information is very challenging.

Some works utilize various attention mechanisms [3, 7, 10, 13,
20, 25, 27, 35, 43, 46] to model the semantic relevance of the tar-
get aspect and its context words to predict its sentiment polarity.
Although these works have achieved good performance, the inher-
ent defects existing in the attention mechanism still introduce a
lot of noise for the ABSA task. For example, in the sentence “The
ambience was nice, but service wasn’t so great.”, when the aspect
is “ambience”, the attention mechanism still assigns weights to
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the unrelated words like “wasn’t so great”. Although the attention
scores of unrelated context words may be small, they inevitably
introduce interference. This may lead to some deviation between
the aspect feature representation and the standard feature repre-
sentation, especially when there are multiple aspect words in a
sentence.

Besides, most existing works [5, 34, 38, 42, 47] use standard cross-
entropy loss to fine-tune their models for the ABSA task. However,
the traditional cross-entropy loss lacks the discriminative learning
of features [23], ignoring the implicit information of intra-class
compactness and inter-class separability. It cares more about the
accuracy between the label and the prediction, so it is difficult to
capture the potential information within the correct labels and
between the correct and incorrect labels. Therefore, in the feature
space, the learned aspect features are loose in the same category,
while the boundaries between different categories are not clear,
which is not good for the ABSA task.

To solve the above problems, we propose a novel architecture
from a new perspective named aspect feature distillation and en-
hancement network (AFDEN), as shown in Figure 1. Specifically,
we first design a dual-feature extraction module to extract aspect-
related features and aspect-unrelated features respectively. To elim-
inate the interference of aspect-unrelated words, inspired by [30],
we propose an aspect-feature distillation module containing a gra-
dient reverse layer (GRL) that learns aspect-unrelated contextual
features through adversarial training, and an aspect-specific orthog-
onal projection layer (AS-OPL) to further project aspect-related
features into the orthogonal space of aspect-unrelated features. In
this way, we distill out pure aspect-related features and remove
aspect-unrelated features.

Furthermore, to exploit the implicit information of labels ignored
by traditional cross-entropy loss, we design an aspect-feature en-
hancement module that leverages supervised contrastive learning
[17] to enhance the representation of aspect-related features af-
ter distillation. Supervised contrastive learning can reduce the dis-
tances between positive samples and increase the distances between
positive and negative samples, which makes it easy to capture the
implicit label information. Therefore, through the aspect-feature
enhancement module, the same sentiment representations are more
centralized in the feature space and the boundaries between the
different sentiment representations are more clear, which is more
conducive to the ABSA task. We evaluate our method on the bench-
mark dataset Semeval2014 [29] and the Twitter dataset [6]. More-
over, we verify the effectiveness and robustness of our method on
MAMS [15] and ARTS datasets [44].

Our contributions are highlighted as follows:

• We propose an aspect-feature distillation module containing
a GRL and an AS-OPL for the ABSA task. The GRL encour-
ages the network to better learn the aspect-unrelated features
through adversarial training, whereas the AS-OPL eliminates
the interference of aspect-unrelated features through pro-
jecting aspect-related features out of the orthogonal space
of aspect-unrelated features.

• We design an aspect-feature enhancement module that lever-
ages supervised contrastive learning to learn the implicit
information within the same sentiment labels and between

the different sentiment labels. This module captures the la-
tent label information missing from the cross-entropy loss,
enhancing the sentiment discriminability of aspect features.

• We conduct extensive experiments on the SemEval2014 and
Twitter datasets. The experimental results demonstrate the
effectiveness of our AFDEN. In addition, our results on the
MAMS dataset and ARTS robust dataset also verify the ef-
fectiveness and robustness of our model.

2 RELATEDWORK
Aspect-based sentiment analysis task is an entity-level oriented
classification task. Compared with the traditional document level
and sentence level sentiment classification, it is a fine-grained senti-
ment classification task and needs deeper semantic understanding.
The early research of aspect sentiment classification mainly used
the traditional machine learning algorithm to study this task as a
text classification problem. For example, [14, 19, 28, 41] designed
bag-of-words, sentiment lexicon and other features to train the sup-
port vector machine (SVM) sentiment classifier. However, feature
engineering is labor-intensive, and the results are highly dependent
on the quality of features, so it is easy to reach the performance
bottleneck.

With the development of deep learning, neural networks have
greatly promoted the development of aspect sentiment analysis,
such as CNN [11, 16, 18, 22], RNNs [1, 36], memory networks [37],
because neural networks can automatically learn the low dimen-
sional and continuous features of aspects and their contexts. For
example, [36] divided the context into left and right sides of aspect
words, modeled the two parts respectively with two LSTMs, and
spliced the aspect information with the input word embedding to
obtain the sentiment representation of aspect words. Then, the
standard cross-entropy loss and softmax layer are used to obtain
the prediction results.

However, themodel solely based on RNN can not well capture the
relationship between aspect words and sentiment polarity words
or phrases in sentences, so the attention mechanism is introduced
[3, 7, 10, 13, 20, 25, 27, 35, 43, 46] to solve this problem. [43] encoded
sentences and given aspect words with LSTM, processed the hidden
layer output with attention mechanism, and obtained the sentiment
polarity representation of aspect words. [27] calculated not only the
attention distribution of sentence hidden layer output but also the
attention distribution of aspect words. [7] used a multi granularity
attention mechanism to capture word-level interactions between
aspects and their contexts. However, the weighting of word-level
features by attention mechanism may introduce a lot of noise and
reduce the prediction accuracy. Although the attention scores of
aspect-unrelated words may be small or even negligible, they will
also lead to some deviations between sentiment representation and
standard representation.

Recent studies have explored the use of graph neural networks
(GNNs) to learn the representation of dependency tree, combined
with syntactic aware graph structure [2, 12, 21, 24, 34, 38, 42, 47, 48]
to solve this task, and achieved attractive results. [47] introduced
aspect-specific graph convolutional networks (ASGCN) and used
dependency graph to deal with aspect level sentiment classifi-
cation tasks. [38] proposed a dependency graph enhanced dual-
transformer network (DGEDT), which jointly considers the flat
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representations learned from Transformer and graph-based rep-
resentations learned from the dependency graph. [42] effectively
encoded grammatical information by reshaping and pruning an
ordinary dependency parse tree, and proposed a relational graph at-
tention network (R-GAT) to encode a new tree structure for aspect
sentiment prediction. [21] proposed a dual graph convolutional
networks (DualGCN) model, which considered the complementar-
ity of syntax structure and semantic correlations simultaneously.
Using dependency-based parse tree can provide more comprehen-
sive syntactic information. However, due to the imperfect parsing
performance and the randomness of input sentences, it is inevitable
to introduce noise information through the dependency tree. Be-
sides, graph convolutional networks have poor ability to model
long-distance or incoherent words in dependency trees.

In addition, pre-trained language models such as BERT [5] have
achieved good performance in many NLP tasks and have also
achieved good results in the field of aspect-based sentiment anal-
ysis. [33] transformed ABSA task into sentence pair classification
task by constructing auxiliary sentences. [45] proposed a post-
training method for BERT to improve the performance during the
fine-tuning phase of ABSA tasks. [4] compared induced trees and
dependent parsing trees from pre-trained language models on sev-
eral popular models of ABSA tasks, and found that induced trees
from fine-tuned RoBERTa (FT-Roberta) outperformed the parser-
provided tree, suggesting that pre-trained language models could
learn better implicit task-oriented syntactic information.

3 METHODOLOGY
3.1 Task Definition
Given an aspect 𝐴 and the corresponding sentence 𝑆 , aspect-based
sentiment classification aims to identify the sentiment polarity
𝑦 ∈ {𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒, 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒, 𝑛𝑒𝑢𝑡𝑟𝑎𝑙} of this aspect, where the sentence
𝑆 = [𝜔1, . . . , 𝜔𝑎+1, . . . , 𝜔𝑎+𝑚, . . . , 𝜔𝑛] is a sequence consisting
of 𝑛 words, and 𝐴 = [𝜔𝑎+1, . . . , 𝜔𝑎+𝑚] stands for the specific
aspect with𝑚 words.

3.2 Overview
Figure 1 provides an overview of our AFDENmodel. We first con-

struct a sentence-aspect pair of "[CLS] sentence [SEP] aspect [SEP]"
as the input of BERT encoder to obtain aspect-aware hidden repre-
sentations of the sentence. Then, the representations are input into
a dual-feature extraction module to obtain the aspect-related and
aspect-unrelated features with rich semantics and syntax informa-
tion. To eliminate the interference of aspect-unrelated features and
separate aspect-related features from the context, a novel aspect-
feature distillation module is proposed with a gradient reverse layer
(GRL) and an aspect-specific orthogonal projection layer (AS-OPL).
The GRL helps the learning of aspect-unrelated features through ad-
versarial training, while the AS-OPL further projects aspect-related
features into the orthogonal space of aspect-unrelated features. Fur-
thermore, an aspect-feature enhancement module with supervised
contrastive learning is designed to capture the implicit information
of different sentiment representations. The training procedure of
our AFDEN is depicted in Algorithm 1. Next, we will elaborate on
the details of our proposed AFDEN model.

Algorithm 1 Training procedure of AFDEN
Input:

Batch size 𝑁 and number of training epochs 𝑡 ;
Sentence-aspect pairs (𝑥, 𝑎) from dataset 𝑋 ;
The rate of supervised contrastive learning 𝛼 .

Output:
The predictions 𝑌𝐴𝑅 of inputs (𝑥, 𝑎).

1: Initialize the parameters for the BERT encoder 𝐹 , the ARGCN
𝐺1 and the AUGCN𝐺2, the self-attentions 𝐴𝑇𝑇1 and 𝐴𝑇𝑇2, the
classifiers 𝐶𝐴𝑅 and 𝐶𝐴𝑈 ;

2: for epoch=1 to t do
3: for sampled minibatch {(𝑥𝑘 , 𝑎𝑘 )}𝑁𝑘=1 do
4: ℎ = 𝐹 (𝑥𝑘 , 𝑎𝑘 );
5: ℎ𝐴𝑅 = 𝐺1 (𝐴𝑇𝑇1 (ℎ), ℎ), ℎ𝐴𝑈 = 𝐺2 (𝐴𝑇𝑇2 (ℎ), ℎ);
6: ℎ𝑚𝑎𝑠𝑘 = ℎ𝐴𝑈 ·𝑚𝑎𝑠𝑘 ;
7: ℎ𝐺𝑅𝐿 = 𝐺𝑅𝐿(ℎ𝑚𝑎𝑠𝑘 ), ℎ𝑂𝑃𝐿 = 𝑂𝑃𝐿(ℎ𝐴𝑅, ℎ𝐴𝑈 );
8: 𝑌𝐴𝑅 = 𝐶𝐴𝑅 (ℎ𝑂𝑃𝐿), 𝑌𝐴𝑈 = 𝐶𝐴𝑈 (ℎ𝐺𝑅𝐿);
9: Calculate L𝐴𝑅 and L𝑠𝑢𝑝

𝐵
as Eq.(12) and (14);

10: Define L1 = 𝛼L𝑠𝑢𝑝𝐵
+ (1 − 𝛼)L𝐴𝑅 ;

11: Calculate L2 as Eq.(7);
12: Update network AFDEN to minimize L1,L2;
13: end for
14: end for
15: return 𝑌𝐴𝑅

3.3 Dual-feature Extraction
To extract aspect-related and aspect-unrelated features, we design a
dual feature extraction module with two self-attention mechanisms,
two graph convolutional networks (GCNs) and an aspect-specific
masking layer. AR-GCN and AU-GCN have the same structure, but
do not share parameters. We feed the attention matrix containing
semantic information obtained by self-attention mechanisms and
the aspect-aware hidden representations containing rich semantic
and syntactic information obtained by BERT encoder into two
GCNs. To better obtain aspect-oriented features, we add an aspect-
specific masking layer after the AU-GCN to shield the influence of
other words.

Self-attention The self-attention mechanism [40] can fully
consider the semantic connections between different words in a
sentence by computing the attention score of each pair of elements
in parallel. Therefore, we use the self-attention mechanism to cal-
culate the score matrix 𝐴 ∈ 𝑅𝑛×𝑛 for the representations obtained
by BERT. Then the score matrix is fed into graph convolutional
networks as the adjacency matrix, it can be expressed as:

𝐴 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑄𝑊
𝑄 × (𝐾𝑊𝐾 )𝑇

√
𝑑

) (1)

where matrices𝑄 and 𝐾 are both equal to the graph representation
of the previous layer and they are initialized to the output repre-
sentation of BERT in our model.𝑊𝑄 and𝑊𝐾 are both learnable
weight matrices, and 𝑑 is the dimension of the input node features.

Graph Convolutional Networks (GCN) The core idea of
graph convolutional networks is to learn a function map. Through
the node 𝑣𝑖 in the mapping graph, a new representation of the
node 𝑣𝑖 can be generated by aggregating its own feature 𝑥𝑖 and
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Figure 1: The overall architecture of AFDEN, which is mainly composed of dual-feature extraction module, aspect-feature
distillation module and aspect-feature enhancement module. The details of our model are described in the main text.

the feature of its neighbor nodes 𝑥 𝑗 ( 𝑗 ∈ 𝑁 (𝑣𝑖 )), so each node
can learn more contextual representations. For the 𝐿-layer GCN,
𝑙 ∈ [1, 2, · · · , 𝐿]. For the 𝑖-th node of the 𝑙-th layer of the graph
convolutional network, its hidden state representationℎ𝑙

𝑖
is updated

by the following formula:

ℎ𝑙𝑖 = 𝜎 (
𝑛∑︁
𝑗=1

𝐴𝑖 𝑗𝑊
𝑙ℎ𝑙−1𝑗 + 𝑏𝑙 ) (2)

where 𝐴𝑖 𝑗 is the adjacency matrix, and 𝐴𝑖 𝑗 is the attention matrix
obtained by the self-attention mechanism.𝑊 𝑙 is a weight matrix.
𝑏𝑙 is a bias term. They are all parametric learnable. 𝜎 is a ReLU
activation function.

Aspect-specific Masking In this layer, we mask the hidden
state vectors of non-aspect words and keep the state of aspect words
unchanged. It can be formulated as:

ℎ𝐿𝑡 =

{
0 1 ≤ 𝑡 < 𝑎 + 1, 𝑎 +𝑚 < 𝑡 ≤ 𝑛
ℎ𝐿𝑡 𝑎 + 1 ≤ 𝑡 ≤ 𝑎 +𝑚 (3)

Because of the graph convolution in the previous step, the aspect-
specific hidden state vector already contains the contextual informa-
tion related to the aspect. Therefore the output 𝐻𝐿

𝑚𝑎𝑠𝑘
obtained by

aspect-specific masking is aspect-oriented, and it can be expressed
as 𝐻𝐿

𝑚𝑎𝑠𝑘
= {0, · · · , ℎ𝐿

𝑎+1, · · · , ℎ
𝐿
𝑎+𝑚, · · · , 0}.

3.4 Aspect-feature Distillation
To better separate aspect-related and aspect-unrelated information,
we propose the aspect-feature distillation module. We design a gra-
dient reverse layer (GRL) to extract aspect-unrelated features, and
an aspect-specific orthogonal projection layer (AS-OPL) to distill
out pure aspect-related features from the orthogonal projection
space of aspect-unrelated features.

Gradient Reverse Layer (GRL) To enable the AU-GCN to
better learn aspect-unrelated features, we insert a gradient reverse
layer (GRL) [8] between aspect-specific masking and the classi-
fier 𝐶𝐴𝑈 to achieve gradient reverse, and realize the interaction of
two-way information through aspect-specific orthogonal projec-
tion layer. Then it can create a confrontation with AR-GCN in the
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Figure 2: The principle of AS-OPL.

dual-feature extraction module, so that the classifier 𝐶𝐴𝑈 can not
predict the sentiment polarity of the embedding correctly while
the classifier 𝐶𝐴𝑅 can predict the sentiment polarity as correctly as
possible. Finally, through adversarial training, AU-GCN can learn
aspect-unrelated features while AR-GCN can learn aspect-related
features as much as possible.

Specifically, GRL acts as an identity transformation during for-
ward propagation, but during back-propagation GRL takes gra-
dients from subsequent layers, changes the sign by multiplying
−𝜆, and passes it to the previous layer. Mathematically, we can
describe the forward and back-propagation behavior of GRL with
the following formula:

𝐺𝑅𝐿(𝑥) = 𝑥 (4)
𝜕𝐺𝑅𝐿(𝑥)

𝜕𝑥
= −𝜆𝐼 (5)

where 𝜆 is a hyperparameter and 𝐼 is an identity matrix. Finally,
the output 𝑓𝐴𝑈 of GRL is sent to the classifier 𝐶𝐴𝑈 to obtain the
prediction result:

𝑌𝐴𝑈 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑓𝐴𝑈 ·𝑊𝐴𝑈 + 𝑏𝐴𝑈 ) (6)

L𝐴𝑈 = 𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑦𝑡𝑟𝑢𝑡ℎ, 𝑦𝐴𝑈 ) (7)
where𝑊𝐴𝑈 and 𝑏𝐴𝑈 are the weights and biases of the𝐶𝐴𝑈 , respec-
tively. They are both parameter-learnable.

Aspect-specific Orthographic Projection Layer (AS-OPL)
Intuitively, the aspect-related vector representation should be or-
thogonal to the aspect-unrelated vector representation in a sentence.
Therefore, we utilize AS-OPL to project the extracted aspect-related
features to the orthogonal direction of the aspect-unrelated features.
The aspect-related feature projection space retains the information
that is more conducive to the correct sentiment classification of the
target aspect, and removes the irrelevant aspect information that
does not help or even interferes with the aspect-based sentiment
classification. Figure 2 illustrates the principle of AS-OPL from

two-dimensional space. Mathematically, we first project the aspect-
related feature vector 𝑓𝐴𝑅 into the direction of the aspect-unrelated
feature vector 𝑓𝐴𝑈 :

𝑓 ∗𝐴𝑅 = 𝑃𝑟𝑜 𝑗 (𝑓𝐴𝑅, 𝑓𝐴𝑈 ) (8)

where 𝑃𝑟𝑜 𝑗 is a projection function,

𝑃𝑟𝑜 𝑗 (𝑥,𝑦) = 𝑥 · 𝑦
|𝑦 |

𝑦

|𝑦 | (9)

where 𝑥 , 𝑦 are vectors. Then we project in the orthogonal direction
of the projected feature 𝑓 ∗

𝐴𝑅
to get a purer aspect-based classification

feature vector:

𝑓𝐴𝑅 = 𝑃𝑟𝑜 𝑗 (𝑓𝐴𝑅, (𝑓𝐴𝑅 − 𝑓 ∗𝐴𝑅)) (10)
Following [30], we use Eq.(8) and Eq.(10) to obtain purer aspect-

related feature representations after distillation. Specifically, we
first extract the aspect-unrelated feature 𝑓 ∗

𝐴𝑅
in 𝑓𝐴𝑅 by projecting

the original aspect-related feature representation 𝑓𝐴𝑅 to the direc-
tion of the aspect-unrelated feature representation 𝑓𝐴𝑈 by Eq.(8).
Then, we project 𝑓𝐴𝑅 to the direction of 𝑓𝐴𝑅 − 𝑓 ∗𝐴𝑅 through Eq.(10),
that is, the direction perpendicular to 𝑓 ∗

𝐴𝑅
, and obtain the feature

representation orthogonal to 𝑓 ∗
𝐴𝑅

. This feature representation is a
further purified aspect-related feature obtained by eliminating the
interference and redundant information of the aspect-unrelated fea-
ture 𝑓 ∗

𝐴𝑅
in 𝑓𝐴𝑅 . Finally, this purified aspect-related feature vector

𝑓𝐴𝑅 is sent to the classifier 𝐶𝐴𝑅 to obtain the prediction result:

𝑌𝐴𝑅 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑓𝐴𝑅 ·𝑊𝐴𝑅 + 𝑏𝐴𝑅) (11)
L𝐴𝑅 = 𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑦𝑡𝑟𝑢𝑡ℎ, 𝑦𝐴𝑅) (12)

where𝑊𝐴𝑅 and 𝑏𝐴𝑅 are the weights and biases of the 𝐶𝐴𝑅 , respec-
tively, and they are both parameter-learnable.

3.5 Aspect-feature Enhancement
To further enhance the sentiment representations of the aspect-
related embedding, we propose the aspect-feature enhancement
module to help the final aspect-based sentiment classification. We
introduce supervised contrastive learning in this module. Super-
vised contrastive learning enables embeddings with the same senti-
ment label to be close to each other, and embeddings with different
sentiment labels to stay away, which is useful for learning high-
quality sentiment representations. Specifically, for ((𝑆𝑖 , 𝐴𝑖 ), 𝑦𝑖 ) in
a batch 𝐵, we first obtain the purified aspect-related sentiment rep-
resentation 𝑓𝐴𝑅 for the sentence-aspect pair through the previous
feature extraction and feature distillation modules. We let 𝑧𝑖 = 𝑓𝐴𝑅 ,
and the supervised contrastive loss in the batch 𝐵 can be defined
as:

𝑃
𝑠𝑢𝑝

𝐵
(𝑖, 𝑐) = 𝑒𝑥𝑝 (𝑠𝑖𝑚(𝑧𝑖 , 𝑧𝑐 )/𝜏)∑

𝑏∈𝐵,𝑏≠𝑖 𝑒𝑥𝑝 (𝑠𝑖𝑚(𝑧𝑖 , 𝑧𝑏 )/𝜏)
(13)

L𝑠𝑢𝑝
𝐵

=
∑︁
𝑖∈𝐵

− log
1
𝐶𝑖

∑︁
𝑦𝑖=𝑦𝑐 ,𝑐≠𝑖

𝑃
𝑠𝑢𝑝

𝐵
(𝑖, 𝑐) (14)

where 𝑃𝑠𝑢𝑝
𝐵

(𝑖, 𝑐) indicates the likelihood that 𝑧𝑐 is most similar to 𝑧𝑖
and 𝜏 is a scalar temperature parameter.We simply use 𝑠𝑖𝑚(𝑧𝑖 , 𝑧𝑐 ) =
𝑧𝑖 · 𝑧𝑐 to measure the similarity. L𝑠𝑢𝑝

𝐵
is a supervised contrastive

loss computed for each sentiment representation in 𝐵, where 𝐶𝑖
is the number of samples in 𝐵 in the same sentiment label 𝑦𝑖 , and
𝐶𝑖 = |{𝑐 |𝑦𝑐 = 𝑦𝑖 , 𝑐 ≠ 𝑖}|.
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4 EXPERIMENTS
4.1 Datasets
We conduct experiments on three public standard datasets. The
Restaurant and Laptop datasets are from SemEval2014 task 4 [29],
consisting of reviews on the restaurant and laptop domains. The
Twitter dataset is originally built by [6] containing twitter posts.
Furthermore, we also use a more challenging dataset, Multi-Aspect
Multi-Sentiment (MAMS) [15], which shares the same domain to the
SemEval2014 Restaurant Review dataset. Each sentence contains
at least two different aspects with different sentiment polarities in
MAMS. All these datasets have three sentiment polarities: positive,
negative and neutral. Each sentence in these datasets is annotated
with the aspects and their corresponding polarities. Statistics for
the three datasets and the MAMS dataset are shown in Table 1.

4.2 Implementation Details
For our AFDEN, we use the bert-base-uncased English version as
the encoder. We use AdamW [26] as the optimizer for BERT and
set the learning rate to 2 × 10−5. To alleviate overfitting, we apply
dropout at a rate of 0.1 to BERT. The dropout rates of AR-GCN
and AU-GCN are both set to 0.1, and the number of AR-GCN and
AU-GCN layers is both set to 2. In GRL, the hyper-parameters 𝜆
swept [0.05, 0.1, 0.2, 0.4, 0.8, 1.0]. The ratios of cross-entropy loss
L𝐴𝑅 and supervised contrastive loss L𝑠𝑢𝑝

𝐵
in L1 are (0.6, 0.4), (0.8,

0.2) and (0.6, 0.4) on the Restaurant, Laptop and Twitter datasets,
respectively. The temperature parameter 𝜏 of supervised contrastive
learning is 0.14, 0.19 and 0.08 on the three datasets, respectively.
The AFDEN model is trained in 20 epochs with a batch size of 32,
and the maximum sequence length is set to 80 during the training.

4.3 Baseline Methods
To comprehensively evaluate our AFDEN model, we compare it
with state-of-the-art baselines. The models are briefly described as
follows.
1) BERT-SPC [5] constructs the sentence-aspect pair input "[CLS]
sentence [SEP] aspect [SEP]" into the basic BERT of sentence pair
classification task, and takes the representation of [CLS] for predic-
tion.
2) AEN+BERT [32] uses BERT as the encoder and employs an
attention encoder network to model between context and aspect
words.
3) BERT-PT [45] adopts a joint post-training method on BERT to
post-train the weights of BERT for multi-task fine-tuning.
4) TD-BERT [9] proposes a target-dependent BERT that takes the
localization output at the aspect word as the classification input
instead of the first [CLS] label.
5) CapsNet+BERT [15] combines BERT and capsule network for
ABSA task.
6) SDGCN-BERT [49] proposes a multi-aspect sentiment classifica-
tion framework that utilizes GCN to effectively capture sentiment
dependencies between different aspects in a sentence.
7) R-GAT+BERT [42] obtains an aspect-oriented dependency tree
structure by reshaping and pruning, and uses a relational graph
attention network to encode a new dependency tree for this task.

Table 1: Statistics on four datasets of ABSA.

Dataset Division #Positive #Negative #Neutral

Restaurant Train 2164 807 637
Test 728 196 196

Laptop Train 994 870 464
Test 341 128 169

Twitter Train 1561 1560 3127
Test 173 173 346

MAMS Train 3380 2764 5042
Test 400 329 607

8) DGEDT+BERT [38] jointly considers flat representation and
graph-based representation through the mutual biaffine module,
and proposes a dependency graph enhanced dual-transformer net-
work.
9) BERT-ADA [31] first fine-tunes BERT with self-supervised
domain-specific data, followed by supervised task-specific fine-
tuning.
10) DualGCN+BERT [21] proposes a dual graph convolutional
network model that considers both syntactic structure and semantic
correlation.

4.4 Comparison Results
We use the accuracy and macro-averaged F1-score as the main
evaluation metrics to evaluate the ABSA models. The main experi-
mental results are shown in Table 2. Our AFDEN model achieves
state-of-the-art performance with accuracies of 87.41%, 82.13% and
78.47% on the Restaurant, Laptop, and Twitter datasets, respec-
tively. These results suggest that our model can sufficiently distill
out the aspect-related features and enhance them for ABSA tasks.
Compared with attention-based methods such as AEN+BERT and
R-GAT+BERT, our AFDEN model eliminates the interference of
aspect-unrelated contexts, so it can well avoid noises introduced by
the attention mechanism. Moreover, compared with DGEDT+BERT,
DualGCN+BERT and other syntactic-based methods, our model
achieves better performance without introducing additional syn-
tactic knowledge.

4.5 Ablation Study
To further investigate the role of different modules in our AFDEN
model, we conduct extensive ablation studies on each module sepa-
rately. The results are shown in Table 3. AFDEN w/o AFE means
that we remove the Aspect-feature Enhancement module, so that
the model can not enhance the aspect feature representation af-
ter distillation by learning the implicit information between the
same and different sentiment labels. Therefore, the performance
degrades significantly on all three datasets. AFDEN w/o DFE in-
dicates that we have deleted the Dual-feature Extraction module,
which means that we directly distill and enhance the aspect fea-
ture of the output representation from BERT. Similarly, AFDEN
w/o AFD denotes that we remove the Aspect-feature Distillation
module and no longer remove the interfering information from the
aspect-unrelated context. The experimental results show that our
aspect-feature distillation module can remove the interference of
aspect-unrelated features well and learn purer aspect sentiment
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Table 2: Experimental results comparison on three publicly available datasets.

Models Rest14 Lap14 Twitter
Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

BERT-SPC 84.46 76.98 78.99 75.03 73.55 72.14
AEN+BERT 83.12 73.76 79.93 76.31 74.71 73.13
BERT-PT 84.95 76.96 78.07 75.08 - -
TD-BERT 85.10 78.40 78.90 74.40 76.70 74.30

CapsNet+BERT 85.09 77.75 78.21 73.34 - -
SDGCN-BERT 83.57 76.47 81.35 78.34 - -
R-GAT+BERT 86.60 81.35 78.21 74.07 76.15 74.88
DGEDT+BERT 86.30 80.00 79.80 75.60 77.90 75.40
BERT-ADA 87.14 80.05 79.19 74.18 - -

DualGCN+BERT 87.13 81.16 81.80 78.10 77.40 76.02
Our AFDEN 87.41 82.21 82.13 78.81 78.47 77.27

Table 3: Experimental results of ablation study

Models Rest14 Lap14 Twitter
Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

AFDEN w/o AFE 86.16 80.14 79.62 76.19 75.72 73.75
AFDEN w/o DFE 86.16 80.25 78.68 74.71 75.87 74.82
AFDEN w/o AFD 86.07 79.67 79.93 76.34 76.30 74.99

AFDEN 87.41 82.21 82.13 78.81 78.47 77.27

correlation representation. Overall, our AFDEN with all modules
achieves the best performance.

4.6 Case Study
Table 4 shows some cases for aspect sentiment prediction using
different models. The symbols 𝑃 , 𝑁 and 𝑂 represent positive, nega-
tive and neutral sentiments respectively. The red and blue colors in
the table represent the aspect words that need to be predicted. For
the first sentence, when the aspect is “focacchia bread”, all three
baselines predict it as positive, and only our AFDEN predicts it as
neutral. For the attention-based model AEN+BERT, it tends to focus
on the noisy words “to die for”, which means excellent. Besides,
for the DualGCN+BERT model, although the syntactic dependency
provides some direct connections between the target aspect and
some words, the complexity of sentences and the instability of de-
pendency parsing performance may lead to the deviation of aspect
and its expressions. Compared with other models, our AFDEN can
directly eliminate the interference of aspect-unrelated words and
obtain aspect-related opinion expressions more accurately. The
following cases also fully demonstrate that our AFDEN model can
capture the relevant features of the target aspect more effectively,
and obtain more accurate prediction results.

4.7 Visualization for Aspect-related Features
To more intuitively verify the effectiveness of our model, we vi-
sualize the embedding distribution of aspect-related features with
T-distributed Stochastic Neighbor Embedding (t-SNE) [39], which is
a nonlinear dimensionality reduction algorithm. It is very suitable
for reducing high-dimensional data to two or three dimensions for
visualization. We take the final high-dimensional aspect-related

feature representations for visualization. Figure 3 and Figure 4 show
the visualization results on the Laptop and Restaurant datasets, re-
spectively. The red, green and blue dots represent positive, neutral
and negative aspect-related feature representations, respectively.
Figure 3(a) shows that the aspect-related feature enhancement mod-
ule is removed and only the standard cross-entropy loss is used
to fine-tune our model. It can be seen that the distributions of the
same sentiment embeddings are relatively loose, and the distance
between the three different sentiments is comparatively small. Fig-
ure 3(b) shows the embedding distributions of our AFDEN model.
The Embeddings within the same sentiment are more aggregated,
and the boundaries between different sentiments are more distinct,
which is more conducive to the ABSA task. In addition, the temper-
ature coefficient 𝜏 in supervised contrastive learning can moderate
the degree of attention to difficult samples. To investigate the ef-
fect of temperature coefficients, we conduct experiments on three
datasets, as shown in Figure 5. The model achieves the best perfor-
mance when the temperature coefficients are 0.14, 0.19 and 0.08 on
Restaurant, Laptop and Twitter, respectively.

4.8 Aspect Robustness Study
To analyze the performance of our AFDEN in aspect robustness, we
use Aspect Robustness Test Set (ARTS) [44] for testing. The testsets
apply several perturbations to the reviews from Restaurants and
Laptops. The perturbations include reversing the original sentiment
of the target aspect (REVTGT), perturbing the sentiments of the
non-target aspects (REVNON) and generating more non-target
aspect terms that have opposite sentiment polarities to the target
(ADDDIFF). The testsets are designed to probe whether the models
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Table 4: Case studies of our AFDEN model compared with other baselines.

# Review AEN+BERT BERT-SPC DualGCN+BERT AFDEN
1 They are served on focacchia bread and are to die for . (P×, P×) (P×, P×) (P×, P×) (O✓ , O✓)
2 Great beer selection too , something like 50 beers . P× P× P× O✓
3 I do not like too much windows 8 . P× P× P× N✓
4 A beautiful atmosphere , perfect for drinks and / or appetizers . (P×, P×) (P×, P×) (P×, P×) (P×, O✓)

5 It’s good to go there for drinks if you don’t want to get drunk
because you’ll be lucky if you can get one drink an hour . (N×, N×) (P×, P×) (P×, O✓) (O✓ , O✓)

Table 5: Model performance on Aspect Robustness Test Set (ARTS). We compare the model accuracy on the original and new
testsets, and calculate the accuracy decline of prediction between them.

Models Restaurant-ARTS Laptop-ARTS
Ori→New Decline Ori→New Decline

AEN+BERT 83.12→25.45 -57.67 79.93→30.09 -49.84
BERT-SPC 83.04→54.82 -29.22 77.59→50.94 -26.65

CapsNet+BERT 83.48→55.36 -28.12 77.12→25.86 -51.46
BERT-PT 86.70→59.29 -27.41 78.53→53.29 -25.24

DualGCN+BERT 87.13→63.57 -23.56 81.80→57.99 -23.81
AFDEN 87.41→65.18 -22.23 82.13→59.87 -22.26

Positive
Negative
Neutral

(a) AFDEN w/o AFE

Positive
Negative
Neutral

(b) Our AFDEN

Figure 3: The visualization of aspect-related embeddings on Laptop dataset.

can distinguish the sentiment of the target aspect from the non-
target aspects and aspect-unrelated information.

Table 5 lists the performance of the tested models, among which
our AFDEN model achieves the optimal results, which fully verifies
the aspect robustness of our model. Compared to the obvious per-
formance degradation of the baseline models, AFDEN experiences
a 22.23% and 22.26% decrease on Restaurant and Laptop. The results
show that the perturbation of aspect words can be more robust by
using AFDEN. This is mainly because our model can fully explore
the relationship between aspect words and context information,
and remove the interference of aspect-unrelated context through
aspect feature distillation, so the negative effects of perturbation

can be avoided to some extent. Moreover, the aspect-feature en-
hancement module can learn the implicit information between the
same label and between the different labels, so it is more robust to
the noise generated by perturbation.

4.9 Multi-aspect Effectiveness Study
The performance of baselines and our AFDEN in the MAMS dataset
is shown in Table 6. Compared with the three datasets of Restau-
rant, Laptop and Twitter, where most sentences contain only one
aspect or multiple aspects with the same sentiment, each sentence
in the MAMS dataset contains at least two aspect words and at
least two aspects in the same sentence have different sentiment
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Positive
Neutral
Negative

(a) AFDEN w/o AFE

Positive
Neutral
Negative

(b) Our AFDEN

Figure 4: The visualization of aspect-related embeddings on Restaurant dataset.
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Figure 5: Effect of different temperatures on three datasets.

polarities. This is extremely challenging for the ABSA task. The
results show that our AFDEN achieves state-of-the-art performance.
The efficiency of our model can be attributed to the distillation and
enhancement of aspect features, because they remove the interfer-
ence of aspect-unrelated features and make it easier to distinguish
the relevant context of different aspects.

5 CONCLUSION
In this paper, we propose an AFDEN architecture to address the
disadvantages of the attention mechanism and the traditional cross-
entropy loss for the ABSA task. To eliminate the interference of
aspect-unrelated features, our AFDEN model first extracts the
aspect-related and aspect-unrelated features through the dual-feature
extraction module, and then distills out the aspect-related features
through the aspect-feature distillation module. The aspect-feature
distillation module contains the GRL that learns aspect-unrelated

Table 6: Model performance on MAMS

Models MAMS
Accuracy Macro-F1

AEN 66.72 -
CapsNet 79.78 -

AEN+BERT 72.08 71.46
BERT-SPC 82.22 -

CapsNet+BERT 83.39 -
AFDEN 85.33 84.73

features through adversarial training, and the AS-OPL to further
project aspect-related features into the orthogonal space of aspect-
unrelated features. Moreover, to effectively capture the implicit label
information, we design the aspect-feature enhancement module
that leverages supervised contrastive learning to further enhance
the representations of the pure aspect-related features. Extensive
experiments on the benchmark datasets, the MAMS dataset and the
ARTS dataset show that our AFDEN model has better performance
and robustness than the baseline models.
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